Hypercomplex Polar Fourier Analysis for Image Representation
نویسندگان
چکیده
منابع مشابه
A 3D-polar Coordinate Colour Representation Suitable for Image Analysis
The processing and analysis of colour images has become an important area of study and application. The representation of the RGB colour space in 3D-polar coordinates (hue, saturation and brightness) can sometimes simplify this task by revealing characteristics not visible in the rectangular coordinate representation. The literature describes many such spaces (HLS, HSV, etc.), but many of them,...
متن کاملFast Algorithms for the Hypercomplex Fourier Transforms
In multi-dimensional signal processing the Cliiord Fourier transform (CFT or in the 2-D case: quater-nionic Fourier transform/QFT) is a consequent extension of the complex valued Fourier transform. Hence, we need a fast algorithm in order to compute the transform in practical applications. Since the CFT is based on a corresponding Cliiord algebra (CA) and CAs are not commutative in general, we ...
متن کاملSubcortical representation of non-Fourier image features.
A fundamental goal of visual neuroscience is to identify the neural pathways representing different image features. It is widely argued that the early stages of these pathways represent linear features of the visual scene and that the nonlinearities necessary to represent complex visual patterns are introduced later in cortex. We tested this by comparing the responses of subcortical and cortica...
متن کاملFractional Fourier transforms of hypercomplex signals
An overview is given to a new approach for obtaining generalized Fourier transforms in the context of hypercomplex analysis (or Clifford analysis). These transforms are applicable to higher-dimensional signals with several components and are different from the classical Fourier transform in that they mix the components of the signal. Subsequently, attention is focused on the special case of the...
متن کاملGeneric polar harmonic transforms for invariant image representation
This paper introduces four classes of rotation-invariant orthogonal moments by generalizing four existing moments that use harmonic functions in their radial kernels. Members of these classes share beneficial properties for image representation and pattern recognition like orthogonality and rotation-invariance. The kernel sets of these generic harmonic function-based moments are complete in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2011
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e94.d.1663